
Position Statement for New Paradigms for

Internetwork Security Panel

Steven J. Greenwald

Email: greenwald@itd.nrl.navy.mil

WWW: http://www.itd.nrl.navy.mil/ITD/5540

Center for High Assurance Computer Systems

Naval Research Laboratory

Washington, DC 20375

United States of America

Introduction

The security policy currently used on most

distributed systems is an old one, dating back

to simpler times when most computer sys-

tems were centralized. This security policy

is based on the idea that there is a cen-

tral managing authority, called the system

administration, that is ultimately responsi-

ble for the management of computer security

within an administrative domain. In this se-

curity policy system administration includes

the management of system resources, user ac-

counts, and user privileges. This security pol-

icy is typi�ed by an operating system such

as UNIX. I refer to this older security policy

as the Jurassic Age Security Policy (JASP)

since it apparently dates back to the time

when huge dinosaur computers were kept in

air-conditioned pens, lazily grazing on their

data, before faster, leaner machines wiped

them out.1

1I am obviously open to suggestions for more ap-

JASP introduces di�culties when working

in a distributed computing environment, and

most of the computer systems in use on the

Internet are based on JASP. I am speci�-

cally concerned with the management of sys-

tem resources and access control in a dis-

tributed computing environment. We need

a new paradigm for security that is congru-

ent with the highly distributed nature of the

Internet.

Paradigm Problems

JASP presents the following problems

when working in a distributed environment.

1. User-names are often duplicated across

name-space domains in a distributed sys-

tem. For example, two di�erent users

may have the same user-name on two dif-

ferent hosts within a distributed system.

propriate terminology, and I'm also interested in ex-

actly when JASP �rst came into existence.



2. Location transparency may not be pos-

sible. For mobile users who often change

hosts, the combination of user-name and

host-identi�er fails to uniquely identify

the user. One user may have two (or

more) di�erent user-names at di�erent

locations. Two users in di�erent ad-

ministrative domains may have the same

user-name.

3. There exists a \weak link in the chain"

e�ect. The security of the entire dis-

tributed system depends upon the secu-

rity of the individual hosts that are be-

ing used within a group of administra-

tive domains. One lax system admin-

istration can compromise an entire dis-

tributed system.

4. Users often need to assume di�erent

roles, and JASP does not accommodate

this. I de�ne a role as a labeled set of ca-

pabilities that a user can activate. Roles,

as opposed to protection groups, are gen-

erally considered to be a form of manda-

tory access control. For example, a user

may wish to simultaneously assume the

roles of \panelist" and \chair" for a par-

ticular session.

5. It is often very di�cult to share resources

with other users on other computer sys-

tems without getting permission from

the system administrations involved. Es-

pecially for real-time applications.

6. Foreign user accounts are often necessary

to correct the previous problem. This

places a management burden on the sys-

tem administration and there is the very

serious di�culty of the system adminis-

tration initially verifying the identity of

these foreign users. In addition, foreign

user accounts present the potential prob-

lem of giving the foreign user too many

permissions.

7. Military chain of command systems

and corporate hierarchical systems may

be di�cult to model and implement

because their structure clashes with

the \
at" structure of the omnipotent-

system-administrator approach of JASP.

Solution Requirements?

There are many ways to solve the above

stated problem. I believe the best solution

will contain elements of a libertarian (clas-

sical liberal) philosophy that maximizes the

freedom of users while limiting system ad-

ministration intervention to only vitally nec-

essary functions. Philosophically, this should

have the bene�ts of allowing users as much


exibility in managing their a�airs as possi-

ble, while eliminating much of the drudgery

commonly associated with system adminis-

tration. I believe a this approach is a good

compromise between authoritarian control

and anarchy. I believe this because of the

common observation that the Internet is the

closest thing to a workable, successful anar-

chy that the modern world has ever devel-

oped. Yet it is this very anarchy that is now

causing our present security concerns.

In a libertarian approach, users would be

give more power than they currently have.

This does not mean that system admin-

istrators need give up any of their power

or control. In fact, it will probably mean

that system administrators will be giving

up the things they commonly associate with

drudgery.

Since user processes and resources are for

all intents now decentralized in many dis-

tributed systems, it makes sense to decen-



tralize the method of access control, and the

method of resource management.

First, we can do away with the requirement

that applications identify users by operating

system dependent user names and paths. I

believe that role based access control (RBAC)

is the preferred way to solve this problem. At

a minimum, a role would need to be com-

posed of a label (name), a set of capabilities,

and a list of users that are members of that

role. In addition, roles can be designed to

be related to users in a many-to-many way,

so that users can e�ectively share the same

role (many users to one role) and individual

users can be members of more than one role

(many roles for one user). If required, audit-

ing of users can still take place, even at the

operating system level.

With RBAC, we gain several advantages.

The name of the role can be more descriptive

than often cryptic user names, anonymity is

possible, the many-to-many relationship al-

lows users to assume di�erent roles, and more

than one user to use the same role. The

management of roles becomes part of the

particular distributed application, instead of

an operating system dependent issue. With

RBAC, system administrators would not be

pestered with user requests for foreign ac-

counts, requests to add users to protection

groups, and so forth, since these functions can

be handled by users activating other roles.

Resource management is the other area

where our solution lies. Currently, all re-

sources are, in some sense, \owned" by the

administrative domain they belong to. This

is the wrong paradigm to use in today's de-

centralized world. Looking at this from a lib-

ertarian point of view, it would be better if

users could logically \own" the resources they

have been allocated, and deal with them as

they see �t (in a secure way, of course), allow-

ing for things such as n-person rules, di�erent

decision support mechanisms, and so forth.

For example, if a user has a certain amount

of storage space allocated, why can't that

user let other users access that storage space,

without having to pester a system adminis-

trator? This is a common problem in sys-

tems such as UNIX, where only someone with

the highest permissions can add someone to

a protection group. It makes more sense to

allow individual users to perform these func-

tions, since they have already made the deci-

sion.

In addition, there should be no reason to

logically view these resources as belonging

to particular centralized machines. Users

should be allowed to logically share their re-

sources across administrative domain bound-

aries, and use them as they see �t (e.g., in

collaborative ways such as multiple authors

writing a paper in real-time).

Utilities and security policies can and

should be designed to accommodate these

necessary elements. Some of the issues to be

solved in these policies are things such as the

exact mechanism of RBAC, how to manage

resources e�ciently across administrative do-

mains, how to handle the name-space that

will occur with such systems, and how to

organize the combination of RBAC and dis-

tributed resource management in a coherent

manner that users can understand and use.

But the most important goal of all is that

we must free users from a large amount

of dependence on various administrative do-

mains, while simultaneously freeing the var-

ious system administrations from many te-

dious tasks. I believe that this point will

become increasingly important as distributed

systems continue to multiply.


